Copied to
clipboard

G = D6030C22order 480 = 25·3·5

11st semidirect product of D60 and C22 acting via C22/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C60.84D4, D20.32D6, C12.15D20, D6030C22, C60.105C23, Dic3027C22, C3⋊C84D10, (C6×D20)⋊2C2, (C2×D20)⋊9S3, C3⋊D4014C2, C34(C8⋊D10), C6.50(C2×D20), (C2×C30).55D4, (C2×C6).40D20, C30.87(C2×D4), (C2×C20).96D6, C4.Dic38D5, C1512(C8⋊C22), (C2×C12).98D10, C51(D126C22), D6011C25C2, C6.D2013C2, C4.23(C3⋊D20), C20.29(C3⋊D4), (C2×C60).33C22, C12.96(C22×D5), C20.155(C22×S3), (C3×D20).37C22, C22.4(C3⋊D20), C4.104(C2×S3×D5), (C5×C3⋊C8)⋊18C22, (C2×C4).14(S3×D5), C2.9(C2×C3⋊D20), C10.5(C2×C3⋊D4), (C5×C4.Dic3)⋊2C2, (C2×C10).12(C3⋊D4), SmallGroup(480,388)

Series: Derived Chief Lower central Upper central

C1C60 — D6030C22
C1C5C15C30C60C3×D20C6.D20 — D6030C22
C15C30C60 — D6030C22
C1C2C2×C4

Generators and relations for D6030C22
 G = < a,b,c,d | a60=b2=c2=d2=1, bab=a-1, cac=a19, ad=da, cbc=a3b, dbd=a30b, cd=dc >

Subgroups: 860 in 136 conjugacy classes, 44 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C22×C6, C3×D5, D15, C30, C30, C8⋊C22, C40, Dic10, C4×D5, D20, D20, C5⋊D4, C2×C20, C22×D5, C4.Dic3, D4⋊S3, D4.S3, C4○D12, C6×D4, Dic15, C60, C6×D5, D30, C2×C30, C40⋊C2, D40, C5×M4(2), C2×D20, C4○D20, D126C22, C5×C3⋊C8, C3×D20, C3×D20, Dic30, C4×D15, D60, C157D4, C2×C60, D5×C2×C6, C8⋊D10, C3⋊D40, C6.D20, C5×C4.Dic3, C6×D20, D6011C2, D6030C22
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C8⋊C22, D20, C22×D5, C2×C3⋊D4, S3×D5, C2×D20, D126C22, C3⋊D20, C2×S3×D5, C8⋊D10, C2×C3⋊D20, D6030C22

Smallest permutation representation of D6030C22
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 120)(2 119)(3 118)(4 117)(5 116)(6 115)(7 114)(8 113)(9 112)(10 111)(11 110)(12 109)(13 108)(14 107)(15 106)(16 105)(17 104)(18 103)(19 102)(20 101)(21 100)(22 99)(23 98)(24 97)(25 96)(26 95)(27 94)(28 93)(29 92)(30 91)(31 90)(32 89)(33 88)(34 87)(35 86)(36 85)(37 84)(38 83)(39 82)(40 81)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)
(2 20)(3 39)(4 58)(5 17)(6 36)(7 55)(8 14)(9 33)(10 52)(12 30)(13 49)(15 27)(16 46)(18 24)(19 43)(22 40)(23 59)(25 37)(26 56)(28 34)(29 53)(32 50)(35 47)(38 44)(42 60)(45 57)(48 54)(61 76)(62 95)(63 114)(64 73)(65 92)(66 111)(67 70)(68 89)(69 108)(71 86)(72 105)(74 83)(75 102)(77 80)(78 99)(79 118)(81 96)(82 115)(84 93)(85 112)(87 90)(88 109)(91 106)(94 103)(97 100)(98 119)(101 116)(104 113)(107 110)(117 120)
(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,120)(2,119)(3,118)(4,117)(5,116)(6,115)(7,114)(8,113)(9,112)(10,111)(11,110)(12,109)(13,108)(14,107)(15,106)(16,105)(17,104)(18,103)(19,102)(20,101)(21,100)(22,99)(23,98)(24,97)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61), (2,20)(3,39)(4,58)(5,17)(6,36)(7,55)(8,14)(9,33)(10,52)(12,30)(13,49)(15,27)(16,46)(18,24)(19,43)(22,40)(23,59)(25,37)(26,56)(28,34)(29,53)(32,50)(35,47)(38,44)(42,60)(45,57)(48,54)(61,76)(62,95)(63,114)(64,73)(65,92)(66,111)(67,70)(68,89)(69,108)(71,86)(72,105)(74,83)(75,102)(77,80)(78,99)(79,118)(81,96)(82,115)(84,93)(85,112)(87,90)(88,109)(91,106)(94,103)(97,100)(98,119)(101,116)(104,113)(107,110)(117,120), (61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,120)(2,119)(3,118)(4,117)(5,116)(6,115)(7,114)(8,113)(9,112)(10,111)(11,110)(12,109)(13,108)(14,107)(15,106)(16,105)(17,104)(18,103)(19,102)(20,101)(21,100)(22,99)(23,98)(24,97)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61), (2,20)(3,39)(4,58)(5,17)(6,36)(7,55)(8,14)(9,33)(10,52)(12,30)(13,49)(15,27)(16,46)(18,24)(19,43)(22,40)(23,59)(25,37)(26,56)(28,34)(29,53)(32,50)(35,47)(38,44)(42,60)(45,57)(48,54)(61,76)(62,95)(63,114)(64,73)(65,92)(66,111)(67,70)(68,89)(69,108)(71,86)(72,105)(74,83)(75,102)(77,80)(78,99)(79,118)(81,96)(82,115)(84,93)(85,112)(87,90)(88,109)(91,106)(94,103)(97,100)(98,119)(101,116)(104,113)(107,110)(117,120), (61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,120),(2,119),(3,118),(4,117),(5,116),(6,115),(7,114),(8,113),(9,112),(10,111),(11,110),(12,109),(13,108),(14,107),(15,106),(16,105),(17,104),(18,103),(19,102),(20,101),(21,100),(22,99),(23,98),(24,97),(25,96),(26,95),(27,94),(28,93),(29,92),(30,91),(31,90),(32,89),(33,88),(34,87),(35,86),(36,85),(37,84),(38,83),(39,82),(40,81),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61)], [(2,20),(3,39),(4,58),(5,17),(6,36),(7,55),(8,14),(9,33),(10,52),(12,30),(13,49),(15,27),(16,46),(18,24),(19,43),(22,40),(23,59),(25,37),(26,56),(28,34),(29,53),(32,50),(35,47),(38,44),(42,60),(45,57),(48,54),(61,76),(62,95),(63,114),(64,73),(65,92),(66,111),(67,70),(68,89),(69,108),(71,86),(72,105),(74,83),(75,102),(77,80),(78,99),(79,118),(81,96),(82,115),(84,93),(85,112),(87,90),(88,109),(91,106),(94,103),(97,100),(98,119),(101,116),(104,113),(107,110),(117,120)], [(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)]])

57 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B6C6D6E6F6G8A8B10A10B10C10D12A12B15A15B20A20B20C20D20E20F30A···30F40A···40H60A···60H
order122222344455666666688101010101212151520202020202030···3040···4060···60
size1122020602226022222202020201212224444442222444···412···124···4

57 irreducible representations

dim11111122222222222244444444
type++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10C3⋊D4C3⋊D4D20D20C8⋊C22S3×D5D126C22C3⋊D20C2×S3×D5C3⋊D20C8⋊D10D6030C22
kernelD6030C22C3⋊D40C6.D20C5×C4.Dic3C6×D20D6011C2C2×D20C60C2×C30C4.Dic3D20C2×C20C3⋊C8C2×C12C20C2×C10C12C2×C6C15C2×C4C5C4C4C22C3C1
# reps12211111122142224412222248

Matrix representation of D6030C22 in GL4(𝔽241) generated by

989800
14313300
002424
0021767
,
002250
0013216
15000
5722600
,
118900
024000
00200119
0015641
,
1000
0100
002400
000240
G:=sub<GL(4,GF(241))| [98,143,0,0,98,133,0,0,0,0,24,217,0,0,24,67],[0,0,15,57,0,0,0,226,225,132,0,0,0,16,0,0],[1,0,0,0,189,240,0,0,0,0,200,156,0,0,119,41],[1,0,0,0,0,1,0,0,0,0,240,0,0,0,0,240] >;

D6030C22 in GAP, Magma, Sage, TeX

D_{60}\rtimes_{30}C_2^2
% in TeX

G:=Group("D60:30C2^2");
// GroupNames label

G:=SmallGroup(480,388);
// by ID

G=gap.SmallGroup(480,388);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,64,219,675,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^60=b^2=c^2=d^2=1,b*a*b=a^-1,c*a*c=a^19,a*d=d*a,c*b*c=a^3*b,d*b*d=a^30*b,c*d=d*c>;
// generators/relations

׿
×
𝔽